Методы утепления карбюратора мотоцикла.

Народ городит разные системы отопления. Самым распространенным является просто обертывание карба в тряпочку. Особо не помогает.

Далее идут варианты с прокладкой тоннеля из утеплителя под бензобаком от радиатора к карбу. По отзывам, вроде помогает, но, к сожалению, достаточно громоздко.

Или вот кадр, снятый Ваней Максименко на кантрикроссе Red Wings.

Помимо того, что сам кадр прикольный, прекрасно виден кусок поролона, запиханный в мотоцикл и общипанный сбоку, чтобы не мешался. Наверное, помогает…

В ходе поисков решения этой проблемы мудрый человек подсказал о существовании нагревательных элементов для карбюраторов снегоходов. Довольно быстро был нагуглен такой нагреватель Yamaha с партнамбером 5FU837902000, оригинальная запчасть, которая устанавливается не только на снегоходы, но и на некоторые мотоциклы и квадроциклы Yamaha. Самым распространенным мотоциклом, на котором стоит именно такой элемент, является Yamaha YBR125 последних моделей, с ускорительным насосом. Этот нагревательный элемент имеет мощность 30 W и вполне справляется со своим предназначением. Сразу появилась идея установить такой на карбюратор Keihin PWK 38, который ставился на многие двухтактные мотоциклы разных марок. Только в моем окружении такой карбюратор стоит у меня на TM EN 300 и у моих друзей на Kawasaki KDX 200 и KTM 250 exc.

В процессе поиска альтернатив и попыток понять, хватит ли мощности генератора на 30 W, появился и еще один вариант: фирменный тюнинг-набор KTM с партнабмером 55131003044, состоящий из проводов, разъемов, температурного датчика на +10 градусов и нагревательного элемента, но правда уже на 20 W, и значительно дороже, чем нагреватель от Ямми. Сам нагреватель от KTM отдельно от набора с проводами имеет партнамбер 60031003000.

Никакого смысла в температурном датчике я не увидел, поскольку и так понятно, какая погода на улице, а лишний элемент — это только лишнее слабое звено в цепочке. Позже была найдена инструкция по установке такого набора на KTM, но правда, как мне показалось по чертежу, не на Keihin PWK, а на Mikuni TMX 38. В любом случае, процесс установки оказался совершенно одинаковым.

Смысл электрического обогрева карба в том, что он греет его изнутри, не давая замерзать заслонке и обмерзать жиклерам. С обледенением воздушного фильтра, к сожалению, ничего не сделать.

Установка обогрева карбюратора на мотоцикл.

Мануал для установки тюнинг-набора KTM для обогрева карба Mikuni TMX 38 выглядит следующим образом.

Как видим, тут все довольно просто, главное — не продырявить карб насквозь 🙂 На Keihin PWK нашлась совершенно такая же, как и на Mikuni, отливка для установки нагревательного элемента. Сняли карб с мотоцикла и принялись сверлить.

Ограничение в 16,5 мм, которое было указано на мануале по TMX, в полной мере распространяется и на PWK.

Нарезаем резьбу.

Затем на термопасту сажаем сам Ямашечный отопитель, вместо шайбы используя клемму на массу.

Тут важно соблюсти пару моментов:
1. Сверло у нас конусообразное, а нагреватель карбюратора плоский на конце. Следовательно, контакт будет неплотный. Даже несмотря на то, что в мануале к тюнинг-набору KTM о термопасте ни слова, имеет смысл мазнуть ею нагреватель. Но главное — не переборщить, чтобы, когда будете тянуть, не было гидроудара в ослабленную и хрупкую стенку карба.
2. Обязательно вывести массу непосредственно с нагревателя, поскольку есть такое мнение, что иначе масса пойдет по тросу газа, и тогда последствия сложно прогнозировать. Нагрев троса? 🙂
3. Надо понимать, потянет ли эти 30 W генератор мотоцикла. Если мотоцикл эндуро — то скорее всего потянет, но опять же, в зависимости от модели, надо смотреть спеки. Мой точно тянет, поскольку у меня фара аккуратно лежит на полочке в гараже, а на руле висит мотокроссовый щиток, следовательно, есть запас. Для кроссовых мотоциклов скорее всего такой вариант не подойдет, хотя, опять же, ничто не мешает кинуть аккумулятор от WR в эйрбокс.

Подключаем это все к мотоциклу — и радуемся жизни. На нагрев карба уходит несколько минут, поэтому перед выездом имеет смысл вдумчиво его прогреть. Это еще и для мотора полезно!

Сверлил и подключал Олег — обращайтесь.

Все.

Поделиться «Обогрев карбюратора двухтактного мотоцикла эндуро на примере Keihin PWK 38.»

Ремонт и настройка карбюратора KEIHIN PJ (PWK) Honda CR250

Опубликовано в&nbspДневник, Ремонт 29.11.2015&nbsp

Немного подливал карбюратор, мотоцикл нормально заводился и ехал, но немного туповато реагировал на открытие дросселя и выхлоп был очень «жирным». Поэтому решил пока холодно, заказать ремкомплект и проверить все настройки. Пишу для новичков и тех кто возился с карбами Jikov и другими подобными и регулировал уровень в поплавковой на банке 😉 как я, чтобы легче было разобраться и правильно настроить карбюратор на своем мотике.

Сам карбюратор довольно простой, в нем только главный жиклер (main jet) и жиклер холостого хода (все названия одного и того же pilot jet, slow jet, idle jet). Других дозирующих систем там нет, только холостого хода и главная.

Главный жиклер 178 (должен быть 172). Жиклер холостого хода 58 (должен быть 55). Но т.к выпуск не стандартный, а старенький Pro Circuit, то в этом есть смысл. Также есть еще жиклеры 185, 180, 48 поиграться.

Модель Keihin PJ является предшественником карбюратора Keihin PWK, основным отличием является овальная заслонка у первого, а у второго D — образная заслонка. В инструкции по установке уровня в поплавковой камере указана высота от разъема поплавковой до нижнего края поплавка (float level), для всех 38mm PJ и PWK она составляет 16mm (+-1mm). Еще нашел инфу, где указан уровень топлива для поплавковой камеры: 1mm (+-1mm) ниже уровня разъема поплавковой камеры. Рекомендую проверять именно по нему, т.к уровень топлива — это главная цель.Но сам игольчатый клапан не простой, он имеет подпружиненное основание, на которое давит язычек. Так вот именно эта пружинка у меня и просела и поплавки при наполнении камеры поднимались выше до момента закрытия клапана. В идеале поплавки должны быть параллельно разъему поплавковой камеры.

У меня так

Должно быть

Вот этот игольчатый клапан с пипкой, при измерении высоты поплавков он не должен проседать, т.е высоту отмерять когда язычек поплавков чуть касается пипки, НО не нажимает её (легче карбюратор положить набок на стол, главное что бы не выпала оська поплавков).Также не последнее место в работе карбюратора занимает игла, на примере своей стандартной иглы R1368M попробую пояснить и расшифровать параметры иглы:

R — индекс KEIHIN
13 — угол конусности (1° 34′)
68 — диаметр ровной части иглы (68 * 0.01 + 2.005 = 2,685 мм)
M — получается длина ровной части 44 мм. Можно и штангелем померить такое.

Справочная табличка бля PWK, PJ 34-39mm карбюраторов.

Из изображения видно, что диаметр ровной части (straight diam.) влияет на работу двигателя от 0 до 1/2 открытия дросселя. Позиция клипсы (начальная позиция иглы) от 1/8 до 3/4 открытия дросселя. А сама конусная часть в пределе от 3/8 до полного открытия дросселя.

Карбюратор KEIHIN PJ28L оснащается электромагнитным клапаном (power jet). Который на высоких оборотах (более 8100 об/мин) выдвигается полностью и через жиклер (power jet) дополнительная смесь распыляется в диффузоре. На фото трубка с левой стороны диффузора к центру. Проверить работу соленоида очень просто. Нужно подключить его к 12V АКБ (черно-красный провод + , черно-коричневый — ). Если соленоид выдвигается, значит все ОК. Также можно проверить и на работающем мотоцикле, на оборотах более 8100 об/мин он выдвигается полностью.

На удивление у меня он оказался рабочим.

Если power jet не работает, то можно поставить иглу (jet needle) от более ранних моделей (без power jet), а провод отключить. Разница будет ощущаться только на максимальных оборотах.

В KEIHIN PJ и PWK разная высота запорной иглы и седел (У PWK 13mm, а у PJ 15mm). И меньший на больший не подойдет. Пришлось немного варварски (нарезать внутри немного резьбы и выпрессовать) извлекать старое седло запорной иглы:

Поставил карбоновые лепестки от carbon-werkstatt.de за 20$, толщина 0,5mm как и у стоковых. Boyesen зажрались, у них карбоновые начинаются от 50$, а обычные от 30-40$.

Пока остановился на таких настройках Main Jet 178, Slow Jet 58, Needle R1368M, винт качества 2 оборота, игла в 3м вырезе, высота поплавков ~16mm. Нужно на ходу проверять, смотреть свечу, да и настраивал при +5 С. Пока так, а дальше будет видно. Есть еще игла с большим конусом, которая дает более богатую смесь на высоких оборотах.

P.S На карбюраторе серии PJ без винта количества оборотов, который поднимает золотник. Холостой ход регулируется вращением барашка обогатителя, там есть надпись Idle Adjust. Конечный набор жиклеров по рекомендации FMF: Main Jet 172, Pilot Jet 55. Вин воздуха хх откручен на 2 оборота. И это очень хорошо работает, естественно когда мотор свежесобранный

Смотрите сами вашу спецификацию по годам:

Рекомендации FMF

Карбюратор «Keihin»

Пуск: при пуске холодного двигателя взаимодействуют несколько устройств карбюратора:

• Воздушная заслонка. При низких температурах окружающей среды ее необходимо полностью, а при средних — частично закрыть рукояткой подсоса, расположенной на приборной панели.

• Вакуумное разгрузочное устройство. Оно срабатывает от появившегося после пуска двигателя разрежения и немедленно открывает воздушную заслонку на определенный угол. Теперь двигатель получает больше воздуха, и рабочая смесь несколько обедняется. Также специальный рычажок приоткрывает воздушную заслонку при разгоне автомобиля.

• Вакуумный привод дроссельной заслонки обеспечивает у автомобилей с механической коробкой передач и карбюратором «Keihin II» повышение оборотов холостого хода при температуре охлаждающей жидкости ниже 65″ С. У автомобилей с автоматической коробкой передач повышение оборотов холостого хода при той же температуре охлаждающей жидкости обеспечивается только при включенной передаче (карбюраторы «Keihin I» и «Keihin II»).

Холостой ход: на холостом ходу рабочая смесь состоит из рабочей смеси холостого хода и небольшого количества обычной рабочей смеси из первичной камеры карбюратора (поступившей через приоткрытую дроссельную заслонку).

• Рабочая смесь холостого хода образуется в эмульсионной трубке холостого хода из топлива, поступившего через жиклер холостого хода (у карбюратора «Keihin II» он встроен в эмульсионную трубку) и воздуха из воздушного жиклера холостого хода. Образовавшаяся таким об-разом горючая смесь попадает в диффузор через клапан принудительного холостого хода, проходя мимо регулировочного винта окиси углерода, которым можно отрегулировать состав смеси. Чтобы рабочая смесь не конденсировалась в холодных каналах карбюратора, его слегка подогревает электрический нагревательный элемент.

• Сколько требуется обычной рабочей смеси для поддержания работы карбюратора на заданных оборотах холостого хода, определяем мы путем регулировки упорного винта дроссельной заслонки. Благодаря ему дроссельная заслонка удерживается в чуть приоткрытом положении.

Трогание с места: чтобы при переходе от холостого к рабочему ходу не случилось «провала», к рабочей смеси холосто хода добавляется небольшое количество рабочей смеси, поступающей по узким каналам над дроссельной заслонкой.

Разгон: при внезапном добавлении газа дроссельная заслонка резко открывается, и в шахту карбюратора всасывается большое количество воздуха. Чтобы сохранить нужное соотношение топлива и воздуха в составе рабочей смеси, в этот момент ускорительный насос накачивает в шахту карбюратора дополнительное количество топлива.

Работа при частичной и полной нагрузке: дроссельная заслонка первичной камеры карбюратора соединена непосредственно с педалью газа. Когда она открывается, в смесительной камере карбюратора возникает разрежение, благодаря которому из распылителя всасывается рабочая смесь. Для приготовления этой смеси топливо засасывается из поплавковой камеры через главный жиклер в эмульсионную трубку и смешивается там с воздухом из воздушного жиклера.

Если при повышенных оборотах двигателя и нагрузке разрежение во впускной трубе увеличивается, через жиклер обогащения рабочей смеси, имеющий вакуумное управление, в главный жиклер поступает дополнительное количество топлива. Через распылитель обогащенная рабочая смесь поступает в шахту карбюратора.

Заслонка вторичной камеры действует не от педали газа, а от вакуумного привода. Диафрагма вакуумного привода соединена шлангом с первичной камерой карбюратора. Если разрежение в первичной камере карбюратора достигло определенной величины, диафрагма открывает вторую дроссельную заслонку.

Рычажно-кулачковый механизм обеспечивает включение вторичной камеры карбюратора только тогда, когда педаль газа нажата более чем до половины. Также рычажно-кулачковый механизм заставляет вторичную камеру выключиться\ после того, как педаль газа отпущена.

Чтобы вторая ступень карбюратора включалась по возможности плавно, в момент открытия второй дроссельной заслонки в шахту карбюратора впрыскивается небольшое количество топлива из дополнительной дозирующей системы. Рабочая смесь за счет этого на короткое время обогащается, и двигатель получает дополнительный заряд энергии.

При работе вторичнойкамеры на полную мощность ее режим работы аналогичен первичной камере.

Устройство карбюратора «Keihin-ll»: 1 — поплавок; 2 — крышка карбюратора; 3 — игольчатый клапан поплавка; 4 — прокладка; 5 — вакуумное разгрузочное устройство; 6 — распылитель; 7 — электрически? клапан отключения главного жиклера; 8 — корпус карбюратора; 9 — ускорительный насос; 10 — клапан прекращения подачи топлива при выключении двигателя; 11— промежуточный фланец; 12 — вакуумный регулятор дроссельной заслонки; 13 — управляющий клапан высоких оборотов холостого хода; 14 — вакуумный привод заслонки вторичной камеры карбюратора; 15 — дроссельная заслонка; 16 — электроподогрев канала дополнительной дозирующей системы

Audi 80 1.8 S КИБЕРПАНК ›
Бортжурнал ›
Устройство и регулировка keihin 2 (Кайхен, Кейхин)

Детали карбюратора Keihin

1 – пневмопривод дроссельной заслонки первой камеры;
2 – кронштейн;
3 – пневмопривод дроссельной заслонки второй камеры;
4 – ускорительный насос;
5 – стопорная пластина;
6 – крышка;
7 – пружина диафрагмы;
8 – диафрагма;
9 – вакуумный блок ЭПХХ;
10 – регулировочный винт количества смеси;
11 – защитный колпачок;
12 – регулировочный винт качества (состава) смеси;
13 – воздушный жиклер холостого хода;
14 – топливный жиклер холостого хода;
15 – эмульсионная трубка холостого хода;
16 – воздушный жиклер первой камеры;
17 – резьбовая пробка;
18 – шток ускорительного насоса;
19 – уплотнительное кольцо;
20 – главный топливный жиклер первой камеры;
21 – пневмопривод воздушной заслонки;
22 – прокладка;
23 – поплавок;
24 – игольчатый клапан;
25 – ось поплавка;
26 – рычаг привода ускорительного насоса;
27 – крышка карбюратора;
28 – тяга;
29 – автоматическое пусковое устройство;
30 – распылитель ускорительного насоса;
31 – главный топливный жиклер второй камеры;
32 – воздушный жиклер второй камеры;
33 – эмульсионная трубка второй камеры;
34 – эмульсионная трубка первой камеры;
35 – термостат дроссельной заслонки первой камеры;
36 – термопневмоклапан

Вакуумные соединения карбюратора Keihin

1 – клапан холодного пуска;
2 – пневмопривод дроссельной заслонки первой камеры;
3 – автоматическое пусковое устройство;
4 – вакуумный блок ЭПХХ;
5 – пневмопривод воздушной заслонки;
6 – терморегулятор;
7 – карбюратор;
8 – вакуумный выключатель индикатора выбора передачи;
9 – клапан рециркуляции отработавших газов (только с автоматической КП);
10 – вакуумный резервуар;
11 – клапан;
12 – пневмопривод дроссельной заслонки второй камеры;
13 – патрубок шланга усилителя тормозов;
14 – вакуум-корректор распределителя зажигания;
15 – термостат дроссельной заслонки первой камеры;
16 – термопневмоклапан;
17 – перепускной клапан

Расположение жиклеров на корпусе карбюратора Keihin

1 – главный топливный жиклер первой камеры;
2 – распылитель ускорительного насоса;
3 – главный топливный жиклер второй камеры;
4 – воздушный жиклер второй камеры;
5 – оздушный жиклер холостого хода;
6 – топливный жиклер холостого хода;
7 – воздушный жиклер первой камеры

Регулировка приоткрывания дроссельной заслонки первой камеры карбюратора Keihin


Cжатие рычага плоскогубцами.

1 – рычаг привода дроссельной заслонки первой камеры;

2 – шток пневмопривода дроссельной заслонки первой камеры


Разгибание рычага с помощью отвертки.

1 – рычаг привода дроссельной заслонки первой камеры;

2 – шток пневмопривода дроссельной заслонки первой камеры

ПОРЯДОК ВЫПОЛНЕНИЯ
1. Прогреть двигатель.
2. Снять воздушный фильтр
3. Отсоединить вакуумный шланг (1) от пневмопривода (2) дроссельной заслонки первой камеры
4. Подсоединить контрольный тахометр в соответствии с инструкцией завода-изготовителя.
5. Запустить двигатель и оставить работать на холостом ходу.
6. Проверить частоту вращения по контрольному тахометру, она должна быть 3500 мин–1. При необходимости отрегулировать частоту вращения, сгибая или разгибая вилку рычага привода дроссельной заслонки первой камеры.
7. Снять карбюратор и щупами проверить приоткрывание дроссельной заслонки первой камеры, которое должно быть на моделях с механической трансмиссией (1,3±0,1) мм, а на моделях с автоматической трансмиссией (1,5±0,1) мм. При необходимости отрегулировать приоткрывание дроссельной заслонки, сгибая/ сжимая или разгибая/ разжимая вилку рычага.

Регулировка пускового зазора воздушной заслонки

Рычаг привода воздушной заслонки карбюратора Keihin

1 – рычаг привода воздушной заслонки;

2 – шток пневмопривода;

3 – резинка, фиксирующая рычаг;

4 – пневмопривод воздушной заслонки;

5 – корпус автоматического пускового устройства

Регулировка пускового зазора воздушной заслонки карбюратора Keihin


1 – рычаг привода воздушной заслонки;

2 – упорный рычаг;

3 – гток пневмопривода воздушной заслонки;

4 – резинка, фиксирующая рычаг

ПОРЯДОК ВЫПОЛНЕНИЯ
1. Снять воздушный фильтр
2. Снять крышку автоматического пускового устройства (см. рис. Детали карбюратора Keihin).
3. Повернуть рычаг привода воздушной заслонки до упора против часовой стрелки и зафиксировать в этом положении.
4. Задвинуть по стрелке шток (см. рис. Рычаг привода воздушной заслонки карбюратора Keihin) пневмопривода до упора.
5. Замерить щупами пусковой зазор воздушной заслонки. Он должен быть (5,6±0,15) мм.
6. При необходимости отрегулировать зазор, сгибая/ сжимая и разгибая/разжимая вилку рычага

Регулировка приоткрывания дроссельной заслонки второй камеры карбюратора Keihin


1 – контргайка;

2 – ограничительный винт дроссельной заслонки второй камеры

ПОРЯДОК ВЫПОЛНЕНИЯ
1. Снять карбюратор.
2. Отвернуть ограничительный винт, предварительно отвернув контргайку так, чтобы он отошел от упора. Затем завернуть его до касания упора и довернуть еще на пол-оборота. Затянуть контргайку и законтрить каплей краски.
3. Отрегулировать частоту вращения холостого хода

Винт регулировки качества (состава) смеси карбюратора Keihin


1 – винт регулировки качества (состава) смеси;

2 – рычаг управления дроссельной заслонкой первой камеры;

3 – пневмопривод воздушной заслонки

ПОРЯДОК ВЫПОЛНЕНИЯ
1. Снять карбюратор и подставить под него мензурку.
2. Отвести рычаг от автоматического пускового устройства и зафиксировать его в этом положении, вставив стержень диаметром 12 мм между рычагом и корпусом карбюратора.
3. Плавно десять раз полностью открыть и закрыть дроссельную заслонку первой камеры, приводя этим в действие ускорительный насос.
4. Измерить количество топлива в мензурке, полученное значение разделить на десять. Результат является подачей насоса за один цикл. За один цикл ускорительный насос должен подавать (0,82±0,12) см3 топлива.
5. Если необходимо отрегулировать производительность, слегка подогните рычаг (см. рис. Детали карбюратора Keihin) в месте крепления оттяжной пружины.

6.1.16.5. Регулировка холостого хода

Регулировку проводят при правильно установленном моменте зажигания и выключенных потребителях электроэнергии.
ПОРЯДОК ВЫПОЛНЕНИЯ
1. Прогреть двигатель до рабочей температуры.
2. Подключить контрольный тахометр и газоанализатор в соответствии с инструкцией завода-изготовителя.
3. Отрегулировать частоту вращения холостого хода до (750–850) мин–1 упорным винтом рычага дроссельной заслонки первой камеры (показан стрелкой).
4. Отсоединить шланг вентиляции картера.
5. Винтом установить уровень содержания окиси углерода (СО) в отработавших газах не более (1,0±0,5)%. Проверить и при необходимости восстановить частоту вращения холостого хода, а также содержание СО в отработавших газах.

Карбюратор — устройство для обеспечения двигателей внутреннего сгорания топливом, обеспечивающим его бесперебойную работу.
На требовательных системах с 4-х тактным двигателем устанавливаются карбюраторы постоянного разряжения , которые обеспечивают стабильную работу двигателя во всём диапазоне оборотов, максимальный крутящий момент и оптимальный расход топлива. Обычно на многоцилиндровых двигателях устанавливают батарею карбюраторов, по количеству соответствующих количеству цилиндров. На рядных и V-образных или одноцилиндровых двигателях карбюраторы располагаются по-разному, но функцию свою выполняют одинаково.
Что же такое постоянное разрежение?
Давайте разбираться — как работает и устроен обычный карбюратор?
Топливо попадает в поплавковую камеру, при достижении определённого уровня поплавок всплывает, и конусной иголкой запирает канал. Далее по принципу сообщающихся сосудов топливо заполняет систему жиклёров (выделено жёлтым). Когда двигатель работает, воздух из атмосферы проходя через заслонку, засасывает порцию топлива через жиклёр, и далее эта смесь воспламеняется в цилиндре. Чем выше мы открываем заслонку с иглой (изменяя проходное сечение топливного жиклёра и количество воздуха, а соответственно количество горючей смеси) тем большее кол-во попадает в цилиндр, соответственно мы повышаем мощность и обороты двигателя.

Теперь давайте разберёмся, как работает карбюратор постоянного разряжения.
Тут есть такая же поплавковая камера 9, которая поддерживает уровень топлива, Золотниковая игла 5, дозирующая кол-во топлива, и добавилась вакуумная мембрана 2 с воздушной заслонкой 6.
Как это работает: С ручкой газа у нас связана только воздушная заслонка 6. Открываем газ,во впускном тракте создаётся разряжение.
Через дренаж (выделено красным) разряжение создаётся над резиновой мембраной 2, которая начинает подниматься, потянув за собой иглу 5. Таким образом, в цилиндр подаётся порция топлива. Описанный процесс происходит очень быстро, и визуально на работающем двигателе игла с заслонкой просто плавает в диффузоре.
Преимущества этих карбюраторов от обычных в том, что в цилиндр всегда подаётся чётко дозированная смесь воздух-топливо — именно в том количестве, которое необходимо, как раз на размер открытия воздушной, и соответственно дроссельной заслонки.
Все карбюраторы CVK которые мы можем вам предложить
Обновление 22.04.2015 — Даем в аренду Японский карбюратор Keihin CVK 24!

Рубрики: Мотоспорт

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *